

How to mobilise expert capacities (and time) for implementing IUCN Red List assessments on Mediterranean Monocots

Errol Véla, AMAP / University of Montpellier Catherine Numa, IUCN Centre for Mediterranean Cooperation

Table of contents

- The Mediterranean Hotspot
- 2. Plants in the Mediterranean
- 3. The IUCN Red List
- 4. Mediterranean Monocots assessment
- 5. Main problems and limitations
- 6. Achieving the Mediterranean Red List...

1. The Mediterranean Hotspot

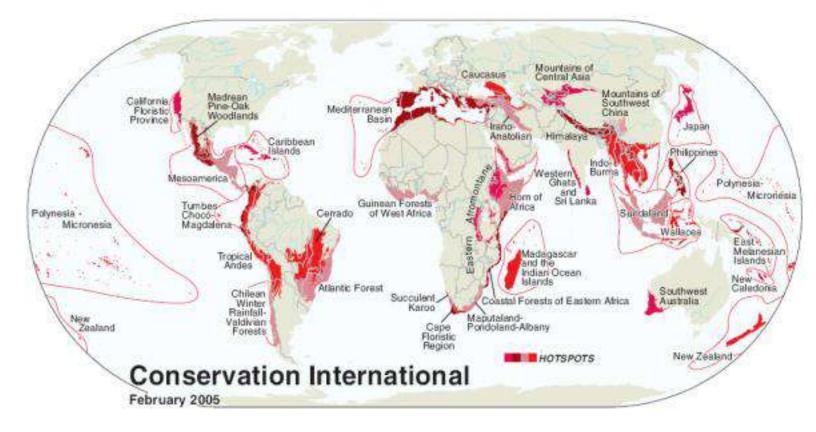
CEPF delimitation:

The Mediterranean Basin, including the western
Zagros + Jordan valley and the near Atlantic coast +
Macaronesian archipelagos

More than 20 countries (from Portugal to Iraq and from Cabo Verde to Jordan)

https://www.cepf.net/sites/default/files/mediterranean-basin-2017-ecosystem-profile-summary-english.pdf

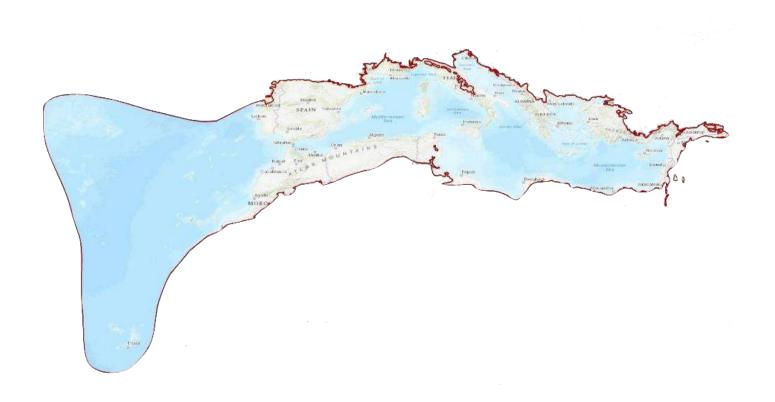
1. The Mediterranean Hotspot


CEPF delimitation:

The Mediterranean Basin, including the western
Zagros + Jordan valley and the near Atlantic coast +
Macaronesian archipelagos

More than 20 countries (from Portugal to Iraq and from Cabo Verde to Jordan)

3rd biodiversity hotspot for plants at global level:


- nb of endemic species
- % ecosystem conversion
- anthropic threat level

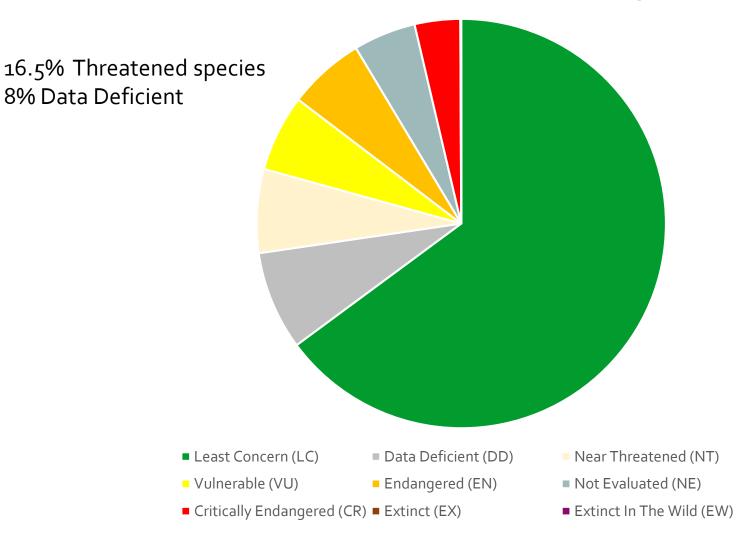
https://www.bioaddict.fr/media/les-34-pots-chauds-hotspots-de-m5529.html

2. Plants in the Mediterranean


In the 1980's/1990's we estimated **25 000 – 30 000 plant species** in the Mediterranean Basin with around **50% endemic** N.B.: Number still increasing through new species description or resurrection...

2. Plants in the Mediterranean

In the 1980's/1990's we estimated **25 000 – 30 000 plant species** in the Mediterranean Basin with around **50% endemic** N.B.: Number still increasing through new species description or resurrection...


In 2017 only 2300 had been evaluated for the IUCN Red List (9.2%) Nowadays 2426 vascular plants and 1855 Bryophytes

3. The IUCN Red List

Mediterranean plants by IUCN Red List Categories

Row Labels	Count of Taxon
Extinct (EX)	2
Extinct In The Wild (EW)	1
Critically Endangered (CR)	154
Endangered (EN)	259
Near Threatened (NT)	283
Least Concern (LC)	2776
Vulnerable (VU)	259
Data Deficient (DD)	334
Not Evaluated (NE)	211
Grand Total	4279

3. The IUCN Red List capacities

Specialist Groups (SG) and/or Red List Authorities (RLA) of the Species Survival Commission (SSC) https://www.iucn.org/commissions/ssc-groups/plants-fungi/plants

Meditarrean Plant Specialist Group (70 expert members, RLA coord.: Errol Véla)

Macaronesian Island Plant Specialist Group (18 expert members, RLA coord.: Luís Silva)

+Turkey Plant Specialist Group (RLA only, 100 expert members, coord.: Özge Balkız, Hayri Duman & Ahmet Emre Yaprak)

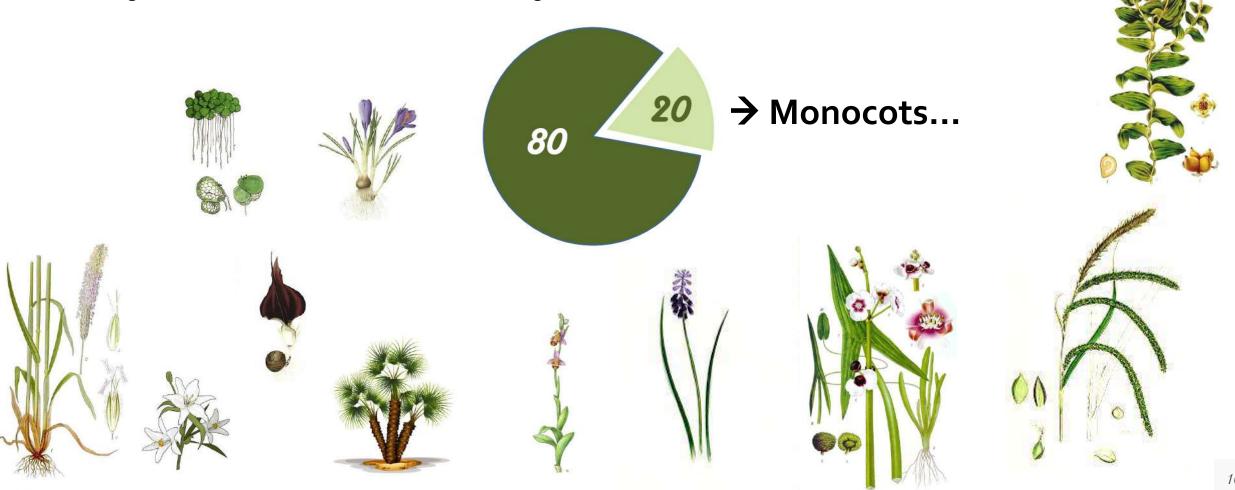
N.B.: overlapping 3 hotspots, Mediterranean / Caucasian / Irano-Anatolian

3. The IUCN Red List capacities

Specialist Groups (SG) and/or Red List Authorities (RLA) of the Species Survival Commission (SSC) https://www.iucn.org/commissions/ssc-groups/plants-fungi/plants

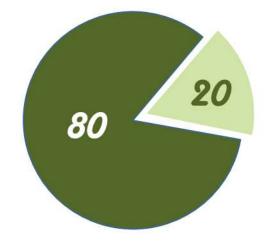
Meditarrean Plant Specialist Group (70 expert members, RLA coord.: Errol Véla)

Macaronesian Island Plant Specialist Group (18 expert members, RLA coord.: Luís Silva)


+Turkey Plant Specialist Group (RLA only, 100 expert members, coord.: Özge Balkız, Hayri Duman & Ahmet Emre Yaprak)

N.B.: overlapping 3 hotspots, Mediterranean / Caucasian / Irano-Anatolian

→ National committees from local initiatives for a lot of countries... but not all of them!


4. Mediterranean Monocots assessment

Around 20% of the Mediterranean flora are Monocots (around 5000?) Around 50% of these could be endemic (around 2500?)

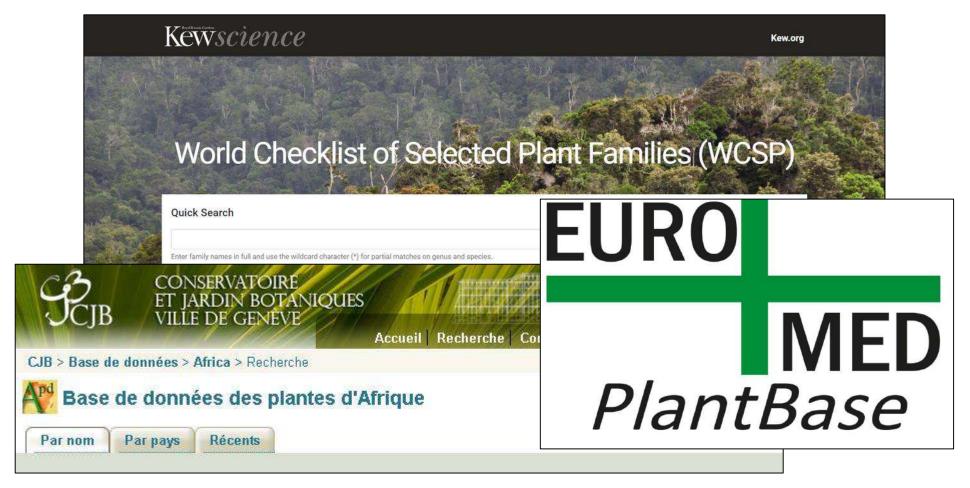
4. Mediterranean Monocots assessment

Around 20% of the Mediterranean flora are Monocots (around 5000?) Around 50% of these could be endemic (around 2500?)

A previous funded project (2015-2017): 3 workshops, >50 experts, 4 managers...

A provisional checklist of 1446 (near-)endemic species was built:

Out of the 1446 species identified, only 602 have already been evaluated


3 844 drafts still need assessment

Orchids: 59 (assessed) / 141 (total endemics) Alliums: 97 (assessed) / 210 (total endemics)

	DI IRI ISHED	NOT PUBLISHED	Grand Total
ALISMATALES	2		
ALISMATACEAE	2		
ARALES	15		
ARACEAE	15		J.
ARECALES	1		
PALMAE	1		
COMMELINALES	1	-	
COMMELINACEAE	1		
CYPERALES	128		400
CYPERACEAE	18		1
GRAMINEAE	110		_
POACEAE	0	,	3,
JUNCALES	17	_	1
JUNCACEAE	17		1
LILIALES	389		_
ALLIACEAE			
ALLIACEAE	97 60		
	1		6
APHYLLANTHACEAE			
ASPARAGACEAE	17		
ASPHODELACEAE			
COLCHICACEAE	15		. 6
DIOSCOREACEAE	2		
HYACINTHACEAE	27		
IRIDACEAE	88		
LILIACEAE	73	_	10
MELANTHIACEAE	1		
RUSCACEAE	0		
NAJADALES	5	_	
JUNCAGINACEAE	0	_	
POSIDONIACEAE	1		
POTAMOGETONACEAE	4	1	
ASPARAGALES	62	86	14
AMARYLLIDACEAE	2	1	
ASPARAGACEAE	1	2	
HYACINTHACEAE	0	1	
ORCHIDACEAE	59	82	14
POALES	1		
POACEAE	1	1	
ASTERALES	0		
ASTERACEAE	0		
Grand Total	620		

5. Main problems and limitations

What **taxonomic reference** to follow?

5. Species delimitation using fluctuating taxonomy (how and why)

1st property:

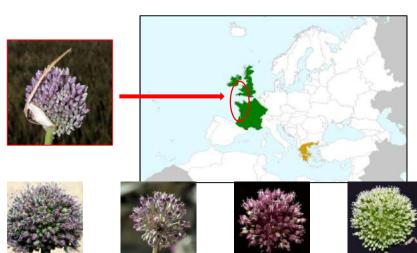
A taxon have to be identifiable on the field

→ no cryptic species (karyology, DNA, numerical...)

5. Species delimitation using fluctuating taxonomy (how and why)

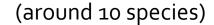
1st property:

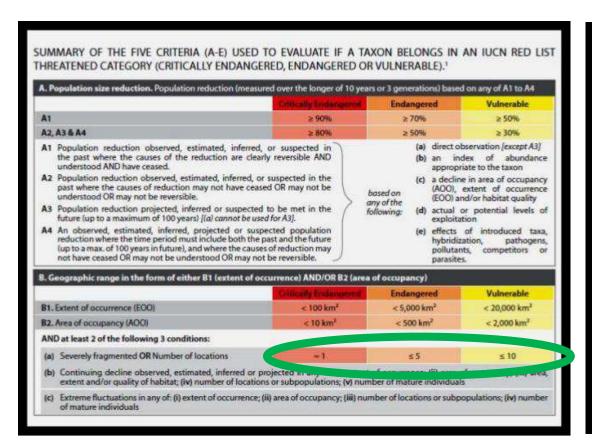
A taxon have to be identifiable on the field

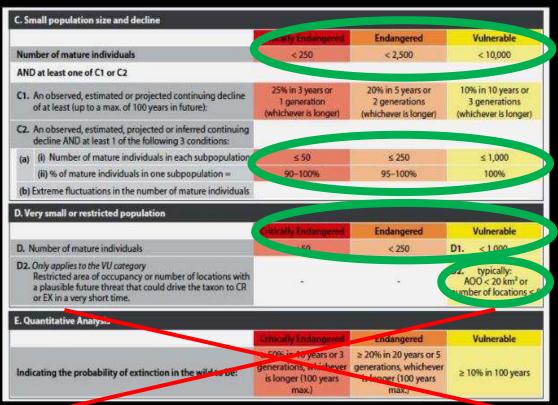

→ no cryptic species (karyology, DNA, numerical...)

2nd property:

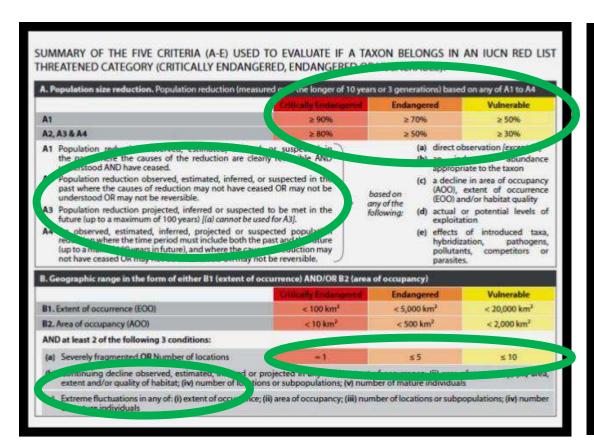
Have to share homogenous conservation issues

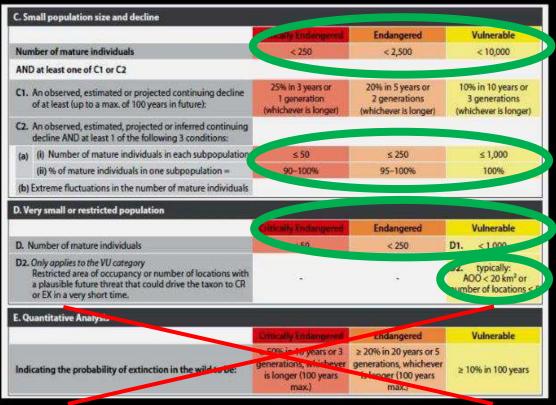

→ ex. Allium ampeloprasum s.s. versus s.l.

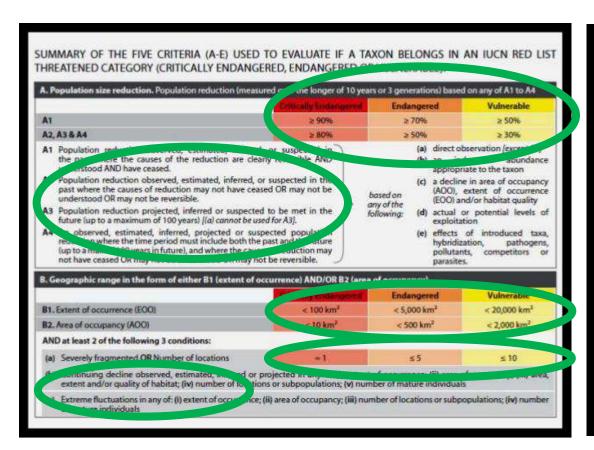


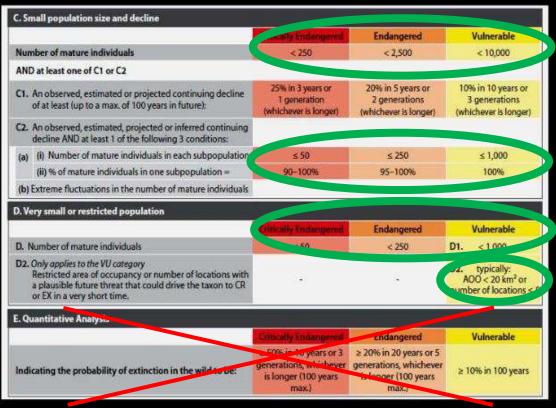

5. Species delimitation using fluctuating taxonomy (how and why)

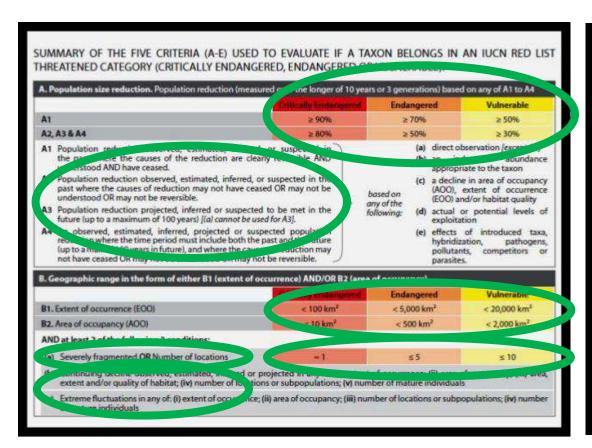
very lumper position

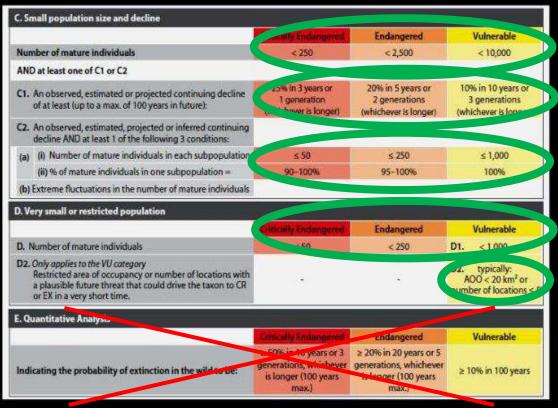

spitalis subsp. The *Ophrys* nightmare... mesaritica (Orchidaceae): → 20 // 70 // 300 species ?! subsp. iricolor O. lojacono vallesiana subsp. vallesiana our compromise ← very splitter

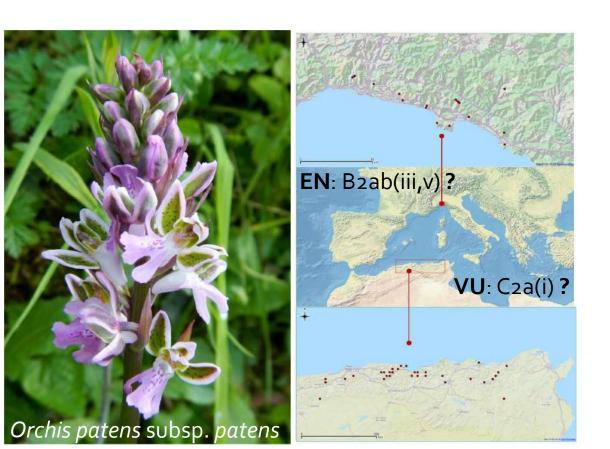

1) lack of quantitative data (population, number of locations...);




- lack of quantitative data (population, number of locations...);
- 2) Lack of historical data (trends, decline ratio...);




- 1) lack of quantitative data (population, number of locations...);
- 2) Lack of historical data (trends, decline ratio...);
- 3) Lack of field knowledge (distribution/EOO, distribution/AOO, threats...);



- 1) lack of quantitative data (population, number of locations...);
- 2) Lack of historical data (trends, decline ratio...);
- Lack of field knowledge (distribution/EOO, distribution/AOO, threats...);
- 4) Lack of biological data (generation length, population fragmentation...)

1) "Severe" vs normal/neutral/natural fragmentation?

- 1) "Severe" vs normal/neutral/natural fragmentation?
- 2) Negative "over" grazing vs positive grazing?

(CC, wikimedia)

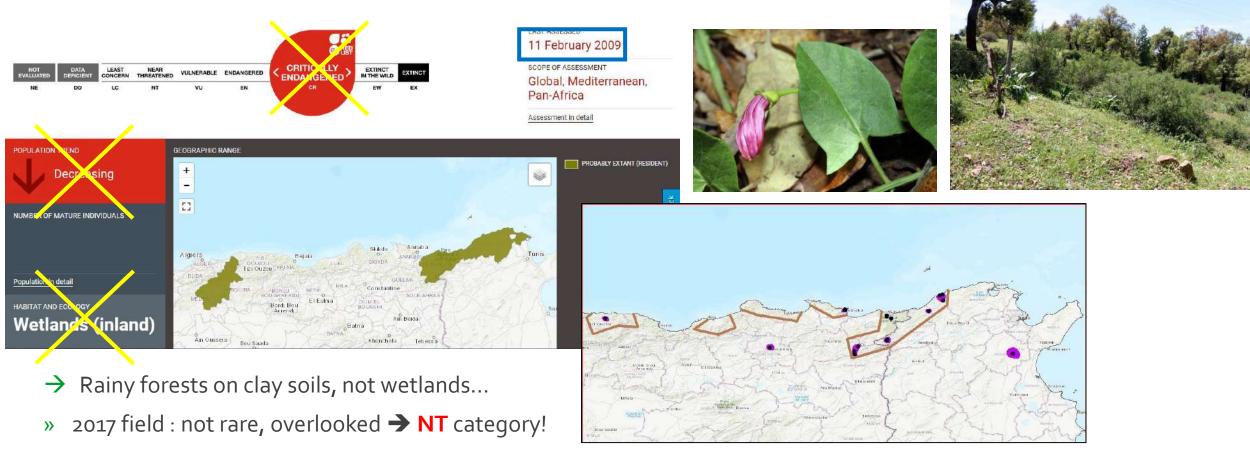
- 1) "Severe" vs normal/neutral/natural fragmentation?
- 2) Negative "over" grazing vs positive grazing?
- 3) forest fires: a dramatic collapse or an endogenous disturbance?

- "Severe" vs normal/neutral/natural fragmentation?
- 2) Negative "over" grazing vs positive grazing?
- 3) forest fires: a dramatic collapse or an endogenous disturbance?

4) "climatic" vs global change: what do we know about the climatic vs other traits of each species/subspecies?

(soil, competition, plasticity, resilience, migration capacities...)

(Escobar & Craft, 2016)


Feedback from reassessing Dicots:

» Convolvulus durandoi:

Feedback from reassessing Dicots:

» Convolvulus durandoi:

Should we already reassess Monocots from the 2007-2010 Freshwater plants project?

We first try to **build a strategy for achieving** some objectives in order to complete the Monocots RL before to start a Dicots one in the future...

- Objective 1: complete and publish the draft assessment Monocots already done on SIS (64 taxa);
- Objective 2: transfer and update the data from European assessments of Mediterranean countries (576 taxa) into the global level;
- Objective 3: complete all Alliums and Orchids species
- Objective 4: try to complete the *Poaceae* family?

We first try to **build a strategy for achieving** some objectives in order to complete the Monocots RL before to start a Dicots one in the future...

- Objective 1: complete and publish the draft assessment Monocots already done on SIS (64 taxa);
- Objective 2: transfer and update the data from European assessments of Mediterranean countries (576 taxa) into the global level;
- Objective 3: complete all Alliums and Orchids species
- Objective 4: try to complete the *Poaceae* family?

Partial objectives (for RL) but important for conservation:

- Red Listing and action planning for "evolutionarily distinct species and lineages" (e.g. monospecific genera) https://www.iucn.org/commissions/species-survival-commission/get-involved/ssc-edge-internal-grant
- Build a red list project for sandy coastal plants on the model of the freshwater plants project (2007-2010)
- Encourage students and conservationists to assess their "favorite" species into the SIS (one by one)

We first try to **build a strategy for achieving** some objectives in order to complete the Monocots RL before to start a Dicots one in the future...

- Objective 1: complete and publish the draft assessment Monocots already done on SIS (64 taxa);
- Objective 2: transfer and update the data from European assessments of Mediterranean countries (576 taxa) into the global level;
- Objective 3: complete all Alliums and Orchids species
- Objective 4: try to complete the *Poaceae* family?

Partial objectives (for RL) but important for conservation:

- Red Listing and action planning for "evolutionarily distinct species and lineages" (e.g. monospecific genera) https://www.iucn.org/commissions/species-survival-commission/get-involved/ssc-edge-internal-grant
- Build a red list project for sandy coastal plants on the model of the freshwater plants project (2007-2010)
- Encourage students and conservationists to assess their "favorite" species into the SIS (one by one)

Parallel strategy: national/regional redlistings through local initiatives (Tunisia, Lebanon, Jordan, Turkey...)

- → How and when to implement the UICN Red List S.I.S. from the national databases, including European ones?
- → What about orphan territories? (Morocco, Algeria, Libya, Egypt, Syria...)

Thanks to all experts of the Mediterranean Plant Specialist Group

AKSA DÖVİ

E. Véla

D. Allen

V. Barrios

R. Lansdown

